by SteelOrbis

Shunde Seko Machinery & Technology Co.,Ltd.
www.gdseko.com
sevvice@gdseko.com
Skype:Lucy Xie,SEKO Machinery
Skype:Lucy Xie,SEKO Machinery
Suggested Reading:How to operate the gas tungsten arc welding?


Gas tungsten arc welding is most commonly used to weld stainless steel and nonferrous materials, such as aluminum and magnesium, but it can be applied to nearly all metals, with a notable exception being zinc and its alloys. Its applications involving carbon steels are limited not because of process restrictions, but because of the existence of more economical steel welding techniques, such as gas metal arc welding and shielded metal arc welding. Furthermore, GTAW can be performed in a variety of other-than-flat positions, depending on the skill of the welder and the materials being welded.
The level of heat input also affects weld quality. Low heat input, caused by low welding current or high welding speed, can limit penetration and cause the weld bead to lift away from the surface being welded. If there is too much heat input, however, the weld bead grows in width while the likelihood of excessive penetration and spatter increase. Additionally, if the welding torch is too far from the workpiece the shielding gas becomes ineffective, causing porosity within the weld. This results in a weld with pinholes, which is weaker than a typical weld.


There are 3 main configurations of CNC Plasma Cutting, and they are largely differentiated by the forms of materials before processing, and the flexibility of the cutting head.
This is the most common and conventional form of CNC Plasma Cutting. Producing flat profiles, where the cut edges are at 90 Degrees to the material surface. High powered cnc plasma cutting beds are configured in this way, able to cut profiles from metal plate up to 150mm thick.